serde_core/de/mod.rs
1//! Generic data structure deserialization framework.
2//!
3//! The two most important traits in this module are [`Deserialize`] and
4//! [`Deserializer`].
5//!
6//! - **A type that implements `Deserialize` is a data structure** that can be
7//! deserialized from any data format supported by Serde, and conversely
8//! - **A type that implements `Deserializer` is a data format** that can
9//! deserialize any data structure supported by Serde.
10//!
11//! # The Deserialize trait
12//!
13//! Serde provides [`Deserialize`] implementations for many Rust primitive and
14//! standard library types. The complete list is below. All of these can be
15//! deserialized using Serde out of the box.
16//!
17//! Additionally, Serde provides a procedural macro called [`serde_derive`] to
18//! automatically generate [`Deserialize`] implementations for structs and enums
19//! in your program. See the [derive section of the manual] for how to use this.
20//!
21//! In rare cases it may be necessary to implement [`Deserialize`] manually for
22//! some type in your program. See the [Implementing `Deserialize`] section of
23//! the manual for more about this.
24//!
25//! Third-party crates may provide [`Deserialize`] implementations for types
26//! that they expose. For example the [`linked-hash-map`] crate provides a
27//! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the
28//! crate provides an implementation of [`Deserialize`] for it.
29//!
30//! # The Deserializer trait
31//!
32//! [`Deserializer`] implementations are provided by third-party crates, for
33//! example [`serde_json`], [`serde_yaml`] and [`postcard`].
34//!
35//! A partial list of well-maintained formats is given on the [Serde
36//! website][data formats].
37//!
38//! # Implementations of Deserialize provided by Serde
39//!
40//! This is a slightly different set of types than what is supported for
41//! serialization. Some types can be serialized by Serde but not deserialized.
42//! One example is `OsStr`.
43//!
44//! - **Primitive types**:
45//! - bool
46//! - i8, i16, i32, i64, i128, isize
47//! - u8, u16, u32, u64, u128, usize
48//! - f32, f64
49//! - char
50//! - **Compound types**:
51//! - \[T; 0\] through \[T; 32\]
52//! - tuples up to size 16
53//! - **Common standard library types**:
54//! - String
55//! - Option\<T\>
56//! - Result\<T, E\>
57//! - PhantomData\<T\>
58//! - **Wrapper types**:
59//! - Box\<T\>
60//! - Box\<\[T\]\>
61//! - Box\<str\>
62//! - Cow\<'a, T\>
63//! - Cell\<T\>
64//! - RefCell\<T\>
65//! - Mutex\<T\>
66//! - RwLock\<T\>
67//! - Rc\<T\> *(if* features = \["rc"\] *is enabled)*
68//! - Arc\<T\> *(if* features = \["rc"\] *is enabled)*
69//! - **Collection types**:
70//! - BTreeMap\<K, V\>
71//! - BTreeSet\<T\>
72//! - BinaryHeap\<T\>
73//! - HashMap\<K, V, H\>
74//! - HashSet\<T, H\>
75//! - LinkedList\<T\>
76//! - VecDeque\<T\>
77//! - Vec\<T\>
78//! - **Zero-copy types**:
79//! - &str
80//! - &\[u8\]
81//! - **FFI types**:
82//! - CString
83//! - Box\<CStr\>
84//! - OsString
85//! - **Miscellaneous standard library types**:
86//! - Duration
87//! - SystemTime
88//! - Path
89//! - PathBuf
90//! - Range\<T\>
91//! - RangeInclusive\<T\>
92//! - Bound\<T\>
93//! - num::NonZero*
94//! - `!` *(unstable)*
95//! - **Net types**:
96//! - IpAddr
97//! - Ipv4Addr
98//! - Ipv6Addr
99//! - SocketAddr
100//! - SocketAddrV4
101//! - SocketAddrV6
102//!
103//! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html
104//! [`Deserialize`]: crate::Deserialize
105//! [`Deserializer`]: crate::Deserializer
106//! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html
107//! [`postcard`]: https://github.com/jamesmunns/postcard
108//! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map
109//! [`serde_derive`]: https://crates.io/crates/serde_derive
110//! [`serde_json`]: https://github.com/serde-rs/json
111//! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml
112//! [derive section of the manual]: https://serde.rs/derive.html
113//! [data formats]: https://serde.rs/#data-formats
114
115use crate::lib::*;
116
117////////////////////////////////////////////////////////////////////////////////
118
119pub mod value;
120
121mod ignored_any;
122mod impls;
123
124pub use self::ignored_any::IgnoredAny;
125pub use crate::private::InPlaceSeed;
126#[cfg(all(not(feature = "std"), no_core_error))]
127#[doc(no_inline)]
128pub use crate::std_error::Error as StdError;
129#[cfg(not(any(feature = "std", no_core_error)))]
130#[doc(no_inline)]
131pub use core::error::Error as StdError;
132#[cfg(feature = "std")]
133#[doc(no_inline)]
134pub use std::error::Error as StdError;
135
136////////////////////////////////////////////////////////////////////////////////
137
138macro_rules! declare_error_trait {
139 (Error: Sized $(+ $($supertrait:ident)::+)*) => {
140 /// The `Error` trait allows `Deserialize` implementations to create descriptive
141 /// error messages belonging to the `Deserializer` against which they are
142 /// currently running.
143 ///
144 /// Every `Deserializer` declares an `Error` type that encompasses both
145 /// general-purpose deserialization errors as well as errors specific to the
146 /// particular deserialization format. For example the `Error` type of
147 /// `serde_json` can represent errors like an invalid JSON escape sequence or an
148 /// unterminated string literal, in addition to the error cases that are part of
149 /// this trait.
150 ///
151 /// Most deserializers should only need to provide the `Error::custom` method
152 /// and inherit the default behavior for the other methods.
153 ///
154 /// # Example implementation
155 ///
156 /// The [example data format] presented on the website shows an error
157 /// type appropriate for a basic JSON data format.
158 ///
159 /// [example data format]: https://serde.rs/data-format.html
160 #[cfg_attr(
161 not(no_diagnostic_namespace),
162 diagnostic::on_unimplemented(
163 message = "the trait bound `{Self}: serde::de::Error` is not satisfied",
164 )
165 )]
166 pub trait Error: Sized $(+ $($supertrait)::+)* {
167 /// Raised when there is general error when deserializing a type.
168 ///
169 /// The message should not be capitalized and should not end with a period.
170 ///
171 /// ```edition2021
172 /// # use std::str::FromStr;
173 /// #
174 /// # struct IpAddr;
175 /// #
176 /// # impl FromStr for IpAddr {
177 /// # type Err = String;
178 /// #
179 /// # fn from_str(_: &str) -> Result<Self, String> {
180 /// # unimplemented!()
181 /// # }
182 /// # }
183 /// #
184 /// use serde::de::{self, Deserialize, Deserializer};
185 ///
186 /// impl<'de> Deserialize<'de> for IpAddr {
187 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
188 /// where
189 /// D: Deserializer<'de>,
190 /// {
191 /// let s = String::deserialize(deserializer)?;
192 /// s.parse().map_err(de::Error::custom)
193 /// }
194 /// }
195 /// ```
196 fn custom<T>(msg: T) -> Self
197 where
198 T: Display;
199
200 /// Raised when a `Deserialize` receives a type different from what it was
201 /// expecting.
202 ///
203 /// The `unexp` argument provides information about what type was received.
204 /// This is the type that was present in the input file or other source data
205 /// of the Deserializer.
206 ///
207 /// The `exp` argument provides information about what type was being
208 /// expected. This is the type that is written in the program.
209 ///
210 /// For example if we try to deserialize a String out of a JSON file
211 /// containing an integer, the unexpected type is the integer and the
212 /// expected type is the string.
213 #[cold]
214 fn invalid_type(unexp: Unexpected, exp: &dyn Expected) -> Self {
215 Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
216 }
217
218 /// Raised when a `Deserialize` receives a value of the right type but that
219 /// is wrong for some other reason.
220 ///
221 /// The `unexp` argument provides information about what value was received.
222 /// This is the value that was present in the input file or other source
223 /// data of the Deserializer.
224 ///
225 /// The `exp` argument provides information about what value was being
226 /// expected. This is the type that is written in the program.
227 ///
228 /// For example if we try to deserialize a String out of some binary data
229 /// that is not valid UTF-8, the unexpected value is the bytes and the
230 /// expected value is a string.
231 #[cold]
232 fn invalid_value(unexp: Unexpected, exp: &dyn Expected) -> Self {
233 Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
234 }
235
236 /// Raised when deserializing a sequence or map and the input data contains
237 /// too many or too few elements.
238 ///
239 /// The `len` argument is the number of elements encountered. The sequence
240 /// or map may have expected more arguments or fewer arguments.
241 ///
242 /// The `exp` argument provides information about what data was being
243 /// expected. For example `exp` might say that a tuple of size 6 was
244 /// expected.
245 #[cold]
246 fn invalid_length(len: usize, exp: &dyn Expected) -> Self {
247 Error::custom(format_args!("invalid length {}, expected {}", len, exp))
248 }
249
250 /// Raised when a `Deserialize` enum type received a variant with an
251 /// unrecognized name.
252 #[cold]
253 fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
254 if expected.is_empty() {
255 Error::custom(format_args!(
256 "unknown variant `{}`, there are no variants",
257 variant
258 ))
259 } else {
260 Error::custom(format_args!(
261 "unknown variant `{}`, expected {}",
262 variant,
263 OneOf { names: expected }
264 ))
265 }
266 }
267
268 /// Raised when a `Deserialize` struct type received a field with an
269 /// unrecognized name.
270 #[cold]
271 fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
272 if expected.is_empty() {
273 Error::custom(format_args!(
274 "unknown field `{}`, there are no fields",
275 field
276 ))
277 } else {
278 Error::custom(format_args!(
279 "unknown field `{}`, expected {}",
280 field,
281 OneOf { names: expected }
282 ))
283 }
284 }
285
286 /// Raised when a `Deserialize` struct type expected to receive a required
287 /// field with a particular name but that field was not present in the
288 /// input.
289 #[cold]
290 fn missing_field(field: &'static str) -> Self {
291 Error::custom(format_args!("missing field `{}`", field))
292 }
293
294 /// Raised when a `Deserialize` struct type received more than one of the
295 /// same field.
296 #[cold]
297 fn duplicate_field(field: &'static str) -> Self {
298 Error::custom(format_args!("duplicate field `{}`", field))
299 }
300 }
301 }
302}
303
304#[cfg(feature = "std")]
305declare_error_trait!(Error: Sized + StdError);
306
307#[cfg(not(feature = "std"))]
308declare_error_trait!(Error: Sized + Debug + Display);
309
310/// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
311/// trait methods.
312///
313/// This is used as an argument to the `invalid_type`, `invalid_value`, and
314/// `invalid_length` methods of the `Error` trait to build error messages.
315///
316/// ```edition2021
317/// # use std::fmt;
318/// #
319/// # use serde::de::{self, Unexpected, Visitor};
320/// #
321/// # struct Example;
322/// #
323/// # impl<'de> Visitor<'de> for Example {
324/// # type Value = ();
325/// #
326/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
327/// # write!(formatter, "definitely not a boolean")
328/// # }
329/// #
330/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
331/// where
332/// E: de::Error,
333/// {
334/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
335/// }
336/// # }
337/// ```
338#[derive(Copy, Clone, PartialEq, Debug)]
339pub enum Unexpected<'a> {
340 /// The input contained a boolean value that was not expected.
341 Bool(bool),
342
343 /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
344 /// was not expected.
345 Unsigned(u64),
346
347 /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
348 /// was not expected.
349 Signed(i64),
350
351 /// The input contained a floating point `f32` or `f64` that was not
352 /// expected.
353 Float(f64),
354
355 /// The input contained a `char` that was not expected.
356 Char(char),
357
358 /// The input contained a `&str` or `String` that was not expected.
359 Str(&'a str),
360
361 /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
362 Bytes(&'a [u8]),
363
364 /// The input contained a unit `()` that was not expected.
365 Unit,
366
367 /// The input contained an `Option<T>` that was not expected.
368 Option,
369
370 /// The input contained a newtype struct that was not expected.
371 NewtypeStruct,
372
373 /// The input contained a sequence that was not expected.
374 Seq,
375
376 /// The input contained a map that was not expected.
377 Map,
378
379 /// The input contained an enum that was not expected.
380 Enum,
381
382 /// The input contained a unit variant that was not expected.
383 UnitVariant,
384
385 /// The input contained a newtype variant that was not expected.
386 NewtypeVariant,
387
388 /// The input contained a tuple variant that was not expected.
389 TupleVariant,
390
391 /// The input contained a struct variant that was not expected.
392 StructVariant,
393
394 /// A message stating what uncategorized thing the input contained that was
395 /// not expected.
396 ///
397 /// The message should be a noun or noun phrase, not capitalized and without
398 /// a period. An example message is "unoriginal superhero".
399 Other(&'a str),
400}
401
402impl<'a> fmt::Display for Unexpected<'a> {
403 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
404 use self::Unexpected::*;
405 match *self {
406 Bool(b) => write!(formatter, "boolean `{}`", b),
407 Unsigned(i) => write!(formatter, "integer `{}`", i),
408 Signed(i) => write!(formatter, "integer `{}`", i),
409 Float(f) => write!(formatter, "floating point `{}`", WithDecimalPoint(f)),
410 Char(c) => write!(formatter, "character `{}`", c),
411 Str(s) => write!(formatter, "string {:?}", s),
412 Bytes(_) => formatter.write_str("byte array"),
413 Unit => formatter.write_str("unit value"),
414 Option => formatter.write_str("Option value"),
415 NewtypeStruct => formatter.write_str("newtype struct"),
416 Seq => formatter.write_str("sequence"),
417 Map => formatter.write_str("map"),
418 Enum => formatter.write_str("enum"),
419 UnitVariant => formatter.write_str("unit variant"),
420 NewtypeVariant => formatter.write_str("newtype variant"),
421 TupleVariant => formatter.write_str("tuple variant"),
422 StructVariant => formatter.write_str("struct variant"),
423 Other(other) => formatter.write_str(other),
424 }
425 }
426}
427
428/// `Expected` represents an explanation of what data a `Visitor` was expecting
429/// to receive.
430///
431/// This is used as an argument to the `invalid_type`, `invalid_value`, and
432/// `invalid_length` methods of the `Error` trait to build error messages. The
433/// message should be a noun or noun phrase that completes the sentence "This
434/// Visitor expects to receive ...", for example the message could be "an
435/// integer between 0 and 64". The message should not be capitalized and should
436/// not end with a period.
437///
438/// Within the context of a `Visitor` implementation, the `Visitor` itself
439/// (`&self`) is an implementation of this trait.
440///
441/// ```edition2021
442/// # use serde::de::{self, Unexpected, Visitor};
443/// # use std::fmt;
444/// #
445/// # struct Example;
446/// #
447/// # impl<'de> Visitor<'de> for Example {
448/// # type Value = ();
449/// #
450/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
451/// # write!(formatter, "definitely not a boolean")
452/// # }
453/// #
454/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
455/// where
456/// E: de::Error,
457/// {
458/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
459/// }
460/// # }
461/// ```
462///
463/// Outside of a `Visitor`, `&"..."` can be used.
464///
465/// ```edition2021
466/// # use serde::de::{self, Unexpected};
467/// #
468/// # fn example<E>() -> Result<(), E>
469/// # where
470/// # E: de::Error,
471/// # {
472/// # let v = true;
473/// return Err(de::Error::invalid_type(
474/// Unexpected::Bool(v),
475/// &"a negative integer",
476/// ));
477/// # }
478/// ```
479#[cfg_attr(
480 not(no_diagnostic_namespace),
481 diagnostic::on_unimplemented(
482 message = "the trait bound `{Self}: serde::de::Expected` is not satisfied",
483 )
484)]
485pub trait Expected {
486 /// Format an explanation of what data was being expected. Same signature as
487 /// the `Display` and `Debug` traits.
488 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
489}
490
491impl<'de, T> Expected for T
492where
493 T: Visitor<'de>,
494{
495 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
496 self.expecting(formatter)
497 }
498}
499
500impl Expected for &str {
501 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
502 formatter.write_str(self)
503 }
504}
505
506impl Display for dyn Expected + '_ {
507 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
508 Expected::fmt(self, formatter)
509 }
510}
511
512////////////////////////////////////////////////////////////////////////////////
513
514/// A **data structure** that can be deserialized from any data format supported
515/// by Serde.
516///
517/// Serde provides `Deserialize` implementations for many Rust primitive and
518/// standard library types. The complete list is [here][crate::de]. All of these
519/// can be deserialized using Serde out of the box.
520///
521/// Additionally, Serde provides a procedural macro called `serde_derive` to
522/// automatically generate `Deserialize` implementations for structs and enums
523/// in your program. See the [derive section of the manual][derive] for how to
524/// use this.
525///
526/// In rare cases it may be necessary to implement `Deserialize` manually for
527/// some type in your program. See the [Implementing
528/// `Deserialize`][impl-deserialize] section of the manual for more about this.
529///
530/// Third-party crates may provide `Deserialize` implementations for types that
531/// they expose. For example the `linked-hash-map` crate provides a
532/// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
533/// provides an implementation of `Deserialize` for it.
534///
535/// [derive]: https://serde.rs/derive.html
536/// [impl-deserialize]: https://serde.rs/impl-deserialize.html
537///
538/// # Lifetime
539///
540/// The `'de` lifetime of this trait is the lifetime of data that may be
541/// borrowed by `Self` when deserialized. See the page [Understanding
542/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
543///
544/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
545#[cfg_attr(
546 not(no_diagnostic_namespace),
547 diagnostic::on_unimplemented(
548 // Prevents `serde_core::de::Deserialize` appearing in the error message
549 // in projects with no direct dependency on serde_core.
550 message = "the trait bound `{Self}: serde::Deserialize<'de>` is not satisfied",
551 note = "for local types consider adding `#[derive(serde::Deserialize)]` to your `{Self}` type",
552 note = "for types from other crates check whether the crate offers a `serde` feature flag",
553 )
554)]
555pub trait Deserialize<'de>: Sized {
556 /// Deserialize this value from the given Serde deserializer.
557 ///
558 /// See the [Implementing `Deserialize`][impl-deserialize] section of the
559 /// manual for more information about how to implement this method.
560 ///
561 /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
562 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
563 where
564 D: Deserializer<'de>;
565
566 /// Deserializes a value into `self` from the given Deserializer.
567 ///
568 /// The purpose of this method is to allow the deserializer to reuse
569 /// resources and avoid copies. As such, if this method returns an error,
570 /// `self` will be in an indeterminate state where some parts of the struct
571 /// have been overwritten. Although whatever state that is will be
572 /// memory-safe.
573 ///
574 /// This is generally useful when repeatedly deserializing values that
575 /// are processed one at a time, where the value of `self` doesn't matter
576 /// when the next deserialization occurs.
577 ///
578 /// If you manually implement this, your recursive deserializations should
579 /// use `deserialize_in_place`.
580 ///
581 /// This method is stable and an official public API, but hidden from the
582 /// documentation because it is almost never what newbies are looking for.
583 /// Showing it in rustdoc would cause it to be featured more prominently
584 /// than it deserves.
585 #[doc(hidden)]
586 fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
587 where
588 D: Deserializer<'de>,
589 {
590 // Default implementation just delegates to `deserialize` impl.
591 *place = tri!(Deserialize::deserialize(deserializer));
592 Ok(())
593 }
594}
595
596/// A data structure that can be deserialized without borrowing any data from
597/// the deserializer.
598///
599/// This is primarily useful for trait bounds on functions. For example a
600/// `from_str` function may be able to deserialize a data structure that borrows
601/// from the input string, but a `from_reader` function may only deserialize
602/// owned data.
603///
604/// ```edition2021
605/// # use serde::de::{Deserialize, DeserializeOwned};
606/// # use std::io::{Read, Result};
607/// #
608/// # trait Ignore {
609/// fn from_str<'a, T>(s: &'a str) -> Result<T>
610/// where
611/// T: Deserialize<'a>;
612///
613/// fn from_reader<R, T>(rdr: R) -> Result<T>
614/// where
615/// R: Read,
616/// T: DeserializeOwned;
617/// # }
618/// ```
619///
620/// # Lifetime
621///
622/// The relationship between `Deserialize` and `DeserializeOwned` in trait
623/// bounds is explained in more detail on the page [Understanding deserializer
624/// lifetimes].
625///
626/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
627#[cfg_attr(
628 not(no_diagnostic_namespace),
629 diagnostic::on_unimplemented(
630 message = "the trait bound `{Self}: serde::de::DeserializeOwned` is not satisfied",
631 )
632)]
633pub trait DeserializeOwned: for<'de> Deserialize<'de> {}
634impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {}
635
636/// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
637/// ever find yourself looking for a way to pass data into a `Deserialize` impl,
638/// this trait is the way to do it.
639///
640/// As one example of stateful deserialization consider deserializing a JSON
641/// array into an existing buffer. Using the `Deserialize` trait we could
642/// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
643/// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
644/// buffer. Using `DeserializeSeed` instead makes this possible as in the
645/// example code below.
646///
647/// The canonical API for stateless deserialization looks like this:
648///
649/// ```edition2021
650/// # use serde::Deserialize;
651/// #
652/// # enum Error {}
653/// #
654/// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error>
655/// # {
656/// # unimplemented!()
657/// # }
658/// ```
659///
660/// Adjusting an API like this to support stateful deserialization is a matter
661/// of accepting a seed as input:
662///
663/// ```edition2021
664/// # use serde::de::DeserializeSeed;
665/// #
666/// # enum Error {}
667/// #
668/// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error>
669/// # {
670/// # let _ = seed;
671/// # unimplemented!()
672/// # }
673/// ```
674///
675/// In practice the majority of deserialization is stateless. An API expecting a
676/// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
677/// case of stateless deserialization.
678///
679/// # Lifetime
680///
681/// The `'de` lifetime of this trait is the lifetime of data that may be
682/// borrowed by `Self::Value` when deserialized. See the page [Understanding
683/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
684///
685/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
686///
687/// # Example
688///
689/// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
690/// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
691/// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
692/// would like to allocate a single `Vec<T>` and then deserialize each subarray
693/// into it. This requires stateful deserialization using the `DeserializeSeed`
694/// trait.
695///
696/// ```edition2021
697/// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor};
698/// use std::fmt;
699/// use std::marker::PhantomData;
700///
701/// // A DeserializeSeed implementation that uses stateful deserialization to
702/// // append array elements onto the end of an existing vector. The preexisting
703/// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
704/// // `ExtendVec` will be traversing the inner arrays of the JSON input and
705/// // appending each integer into the existing Vec.
706/// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
707///
708/// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T>
709/// where
710/// T: Deserialize<'de>,
711/// {
712/// // The return type of the `deserialize` method. This implementation
713/// // appends onto an existing vector but does not create any new data
714/// // structure, so the return type is ().
715/// type Value = ();
716///
717/// fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
718/// where
719/// D: Deserializer<'de>,
720/// {
721/// // Visitor implementation that will walk an inner array of the JSON
722/// // input.
723/// struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
724///
725/// impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T>
726/// where
727/// T: Deserialize<'de>,
728/// {
729/// type Value = ();
730///
731/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
732/// write!(formatter, "an array of integers")
733/// }
734///
735/// fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error>
736/// where
737/// A: SeqAccess<'de>,
738/// {
739/// // Decrease the number of reallocations if there are many elements
740/// if let Some(size_hint) = seq.size_hint() {
741/// self.0.reserve(size_hint);
742/// }
743///
744/// // Visit each element in the inner array and push it onto
745/// // the existing vector.
746/// while let Some(elem) = seq.next_element()? {
747/// self.0.push(elem);
748/// }
749/// Ok(())
750/// }
751/// }
752///
753/// deserializer.deserialize_seq(ExtendVecVisitor(self.0))
754/// }
755/// }
756///
757/// // Visitor implementation that will walk the outer array of the JSON input.
758/// struct FlattenedVecVisitor<T>(PhantomData<T>);
759///
760/// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T>
761/// where
762/// T: Deserialize<'de>,
763/// {
764/// // This Visitor constructs a single Vec<T> to hold the flattened
765/// // contents of the inner arrays.
766/// type Value = Vec<T>;
767///
768/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
769/// write!(formatter, "an array of arrays")
770/// }
771///
772/// fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
773/// where
774/// A: SeqAccess<'de>,
775/// {
776/// // Create a single Vec to hold the flattened contents.
777/// let mut vec = Vec::new();
778///
779/// // Each iteration through this loop is one inner array.
780/// while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? {
781/// // Nothing to do; inner array has been appended into `vec`.
782/// }
783///
784/// // Return the finished vec.
785/// Ok(vec)
786/// }
787/// }
788///
789/// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error>
790/// # where
791/// # D: Deserializer<'de>,
792/// # {
793/// let visitor = FlattenedVecVisitor(PhantomData);
794/// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
795/// # Ok(())
796/// # }
797/// ```
798#[cfg_attr(
799 not(no_diagnostic_namespace),
800 diagnostic::on_unimplemented(
801 message = "the trait bound `{Self}: serde::de::DeserializeSeed<'de>` is not satisfied",
802 )
803)]
804pub trait DeserializeSeed<'de>: Sized {
805 /// The type produced by using this seed.
806 type Value;
807
808 /// Equivalent to the more common `Deserialize::deserialize` method, except
809 /// with some initial piece of data (the seed) passed in.
810 fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
811 where
812 D: Deserializer<'de>;
813}
814
815impl<'de, T> DeserializeSeed<'de> for PhantomData<T>
816where
817 T: Deserialize<'de>,
818{
819 type Value = T;
820
821 #[inline]
822 fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
823 where
824 D: Deserializer<'de>,
825 {
826 T::deserialize(deserializer)
827 }
828}
829
830////////////////////////////////////////////////////////////////////////////////
831
832/// A **data format** that can deserialize any data structure supported by
833/// Serde.
834///
835/// The role of this trait is to define the deserialization half of the [Serde
836/// data model], which is a way to categorize every Rust data type into one of
837/// 29 possible types. Each method of the `Deserializer` trait corresponds to one
838/// of the types of the data model.
839///
840/// Implementations of `Deserialize` map themselves into this data model by
841/// passing to the `Deserializer` a `Visitor` implementation that can receive
842/// these various types.
843///
844/// The types that make up the Serde data model are:
845///
846/// - **14 primitive types**
847/// - bool
848/// - i8, i16, i32, i64, i128
849/// - u8, u16, u32, u64, u128
850/// - f32, f64
851/// - char
852/// - **string**
853/// - UTF-8 bytes with a length and no null terminator.
854/// - When serializing, all strings are handled equally. When deserializing,
855/// there are three flavors of strings: transient, owned, and borrowed.
856/// - **byte array** - \[u8\]
857/// - Similar to strings, during deserialization byte arrays can be
858/// transient, owned, or borrowed.
859/// - **option**
860/// - Either none or some value.
861/// - **unit**
862/// - The type of `()` in Rust. It represents an anonymous value containing
863/// no data.
864/// - **unit_struct**
865/// - For example `struct Unit` or `PhantomData<T>`. It represents a named
866/// value containing no data.
867/// - **unit_variant**
868/// - For example the `E::A` and `E::B` in `enum E { A, B }`.
869/// - **newtype_struct**
870/// - For example `struct Millimeters(u8)`.
871/// - **newtype_variant**
872/// - For example the `E::N` in `enum E { N(u8) }`.
873/// - **seq**
874/// - A variably sized heterogeneous sequence of values, for example `Vec<T>`
875/// or `HashSet<T>`. When serializing, the length may or may not be known
876/// before iterating through all the data. When deserializing, the length
877/// is determined by looking at the serialized data.
878/// - **tuple**
879/// - A statically sized heterogeneous sequence of values for which the
880/// length will be known at deserialization time without looking at the
881/// serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or
882/// `[u64; 10]`.
883/// - **tuple_struct**
884/// - A named tuple, for example `struct Rgb(u8, u8, u8)`.
885/// - **tuple_variant**
886/// - For example the `E::T` in `enum E { T(u8, u8) }`.
887/// - **map**
888/// - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`.
889/// - **struct**
890/// - A heterogeneous key-value pairing in which the keys are strings and
891/// will be known at deserialization time without looking at the serialized
892/// data, for example `struct S { r: u8, g: u8, b: u8 }`.
893/// - **struct_variant**
894/// - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`.
895///
896/// The `Deserializer` trait supports two entry point styles which enables
897/// different kinds of deserialization.
898///
899/// 1. The `deserialize_any` method. Self-describing data formats like JSON are
900/// able to look at the serialized data and tell what it represents. For
901/// example the JSON deserializer may see an opening curly brace (`{`) and
902/// know that it is seeing a map. If the data format supports
903/// `Deserializer::deserialize_any`, it will drive the Visitor using whatever
904/// type it sees in the input. JSON uses this approach when deserializing
905/// `serde_json::Value` which is an enum that can represent any JSON
906/// document. Without knowing what is in a JSON document, we can deserialize
907/// it to `serde_json::Value` by going through
908/// `Deserializer::deserialize_any`.
909///
910/// 2. The various `deserialize_*` methods. Non-self-describing formats like
911/// Postcard need to be told what is in the input in order to deserialize it.
912/// The `deserialize_*` methods are hints to the deserializer for how to
913/// interpret the next piece of input. Non-self-describing formats are not
914/// able to deserialize something like `serde_json::Value` which relies on
915/// `Deserializer::deserialize_any`.
916///
917/// When implementing `Deserialize`, you should avoid relying on
918/// `Deserializer::deserialize_any` unless you need to be told by the
919/// Deserializer what type is in the input. Know that relying on
920/// `Deserializer::deserialize_any` means your data type will be able to
921/// deserialize from self-describing formats only, ruling out Postcard and many
922/// others.
923///
924/// [Serde data model]: https://serde.rs/data-model.html
925///
926/// # Lifetime
927///
928/// The `'de` lifetime of this trait is the lifetime of data that may be
929/// borrowed from the input when deserializing. See the page [Understanding
930/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
931///
932/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
933///
934/// # Example implementation
935///
936/// The [example data format] presented on the website contains example code for
937/// a basic JSON `Deserializer`.
938///
939/// [example data format]: https://serde.rs/data-format.html
940#[cfg_attr(
941 not(no_diagnostic_namespace),
942 diagnostic::on_unimplemented(
943 message = "the trait bound `{Self}: serde::de::Deserializer<'de>` is not satisfied",
944 )
945)]
946pub trait Deserializer<'de>: Sized {
947 /// The error type that can be returned if some error occurs during
948 /// deserialization.
949 type Error: Error;
950
951 /// Require the `Deserializer` to figure out how to drive the visitor based
952 /// on what data type is in the input.
953 ///
954 /// When implementing `Deserialize`, you should avoid relying on
955 /// `Deserializer::deserialize_any` unless you need to be told by the
956 /// Deserializer what type is in the input. Know that relying on
957 /// `Deserializer::deserialize_any` means your data type will be able to
958 /// deserialize from self-describing formats only, ruling out Postcard and
959 /// many others.
960 fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
961 where
962 V: Visitor<'de>;
963
964 /// Hint that the `Deserialize` type is expecting a `bool` value.
965 fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
966 where
967 V: Visitor<'de>;
968
969 /// Hint that the `Deserialize` type is expecting an `i8` value.
970 fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
971 where
972 V: Visitor<'de>;
973
974 /// Hint that the `Deserialize` type is expecting an `i16` value.
975 fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
976 where
977 V: Visitor<'de>;
978
979 /// Hint that the `Deserialize` type is expecting an `i32` value.
980 fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
981 where
982 V: Visitor<'de>;
983
984 /// Hint that the `Deserialize` type is expecting an `i64` value.
985 fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
986 where
987 V: Visitor<'de>;
988
989 /// Hint that the `Deserialize` type is expecting an `i128` value.
990 ///
991 /// The default behavior unconditionally returns an error.
992 fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
993 where
994 V: Visitor<'de>,
995 {
996 let _ = visitor;
997 Err(Error::custom("i128 is not supported"))
998 }
999
1000 /// Hint that the `Deserialize` type is expecting a `u8` value.
1001 fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1002 where
1003 V: Visitor<'de>;
1004
1005 /// Hint that the `Deserialize` type is expecting a `u16` value.
1006 fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1007 where
1008 V: Visitor<'de>;
1009
1010 /// Hint that the `Deserialize` type is expecting a `u32` value.
1011 fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1012 where
1013 V: Visitor<'de>;
1014
1015 /// Hint that the `Deserialize` type is expecting a `u64` value.
1016 fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1017 where
1018 V: Visitor<'de>;
1019
1020 /// Hint that the `Deserialize` type is expecting an `u128` value.
1021 ///
1022 /// The default behavior unconditionally returns an error.
1023 fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1024 where
1025 V: Visitor<'de>,
1026 {
1027 let _ = visitor;
1028 Err(Error::custom("u128 is not supported"))
1029 }
1030
1031 /// Hint that the `Deserialize` type is expecting a `f32` value.
1032 fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1033 where
1034 V: Visitor<'de>;
1035
1036 /// Hint that the `Deserialize` type is expecting a `f64` value.
1037 fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1038 where
1039 V: Visitor<'de>;
1040
1041 /// Hint that the `Deserialize` type is expecting a `char` value.
1042 fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1043 where
1044 V: Visitor<'de>;
1045
1046 /// Hint that the `Deserialize` type is expecting a string value and does
1047 /// not benefit from taking ownership of buffered data owned by the
1048 /// `Deserializer`.
1049 ///
1050 /// If the `Visitor` would benefit from taking ownership of `String` data,
1051 /// indicate this to the `Deserializer` by using `deserialize_string`
1052 /// instead.
1053 fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1054 where
1055 V: Visitor<'de>;
1056
1057 /// Hint that the `Deserialize` type is expecting a string value and would
1058 /// benefit from taking ownership of buffered data owned by the
1059 /// `Deserializer`.
1060 ///
1061 /// If the `Visitor` would not benefit from taking ownership of `String`
1062 /// data, indicate that to the `Deserializer` by using `deserialize_str`
1063 /// instead.
1064 fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1065 where
1066 V: Visitor<'de>;
1067
1068 /// Hint that the `Deserialize` type is expecting a byte array and does not
1069 /// benefit from taking ownership of buffered data owned by the
1070 /// `Deserializer`.
1071 ///
1072 /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
1073 /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
1074 /// instead.
1075 fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1076 where
1077 V: Visitor<'de>;
1078
1079 /// Hint that the `Deserialize` type is expecting a byte array and would
1080 /// benefit from taking ownership of buffered data owned by the
1081 /// `Deserializer`.
1082 ///
1083 /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
1084 /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
1085 /// instead.
1086 fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1087 where
1088 V: Visitor<'de>;
1089
1090 /// Hint that the `Deserialize` type is expecting an optional value.
1091 ///
1092 /// This allows deserializers that encode an optional value as a nullable
1093 /// value to convert the null value into `None` and a regular value into
1094 /// `Some(value)`.
1095 fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1096 where
1097 V: Visitor<'de>;
1098
1099 /// Hint that the `Deserialize` type is expecting a unit value.
1100 fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1101 where
1102 V: Visitor<'de>;
1103
1104 /// Hint that the `Deserialize` type is expecting a unit struct with a
1105 /// particular name.
1106 fn deserialize_unit_struct<V>(
1107 self,
1108 name: &'static str,
1109 visitor: V,
1110 ) -> Result<V::Value, Self::Error>
1111 where
1112 V: Visitor<'de>;
1113
1114 /// Hint that the `Deserialize` type is expecting a newtype struct with a
1115 /// particular name.
1116 fn deserialize_newtype_struct<V>(
1117 self,
1118 name: &'static str,
1119 visitor: V,
1120 ) -> Result<V::Value, Self::Error>
1121 where
1122 V: Visitor<'de>;
1123
1124 /// Hint that the `Deserialize` type is expecting a sequence of values.
1125 fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1126 where
1127 V: Visitor<'de>;
1128
1129 /// Hint that the `Deserialize` type is expecting a sequence of values and
1130 /// knows how many values there are without looking at the serialized data.
1131 fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
1132 where
1133 V: Visitor<'de>;
1134
1135 /// Hint that the `Deserialize` type is expecting a tuple struct with a
1136 /// particular name and number of fields.
1137 fn deserialize_tuple_struct<V>(
1138 self,
1139 name: &'static str,
1140 len: usize,
1141 visitor: V,
1142 ) -> Result<V::Value, Self::Error>
1143 where
1144 V: Visitor<'de>;
1145
1146 /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
1147 fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1148 where
1149 V: Visitor<'de>;
1150
1151 /// Hint that the `Deserialize` type is expecting a struct with a particular
1152 /// name and fields.
1153 fn deserialize_struct<V>(
1154 self,
1155 name: &'static str,
1156 fields: &'static [&'static str],
1157 visitor: V,
1158 ) -> Result<V::Value, Self::Error>
1159 where
1160 V: Visitor<'de>;
1161
1162 /// Hint that the `Deserialize` type is expecting an enum value with a
1163 /// particular name and possible variants.
1164 fn deserialize_enum<V>(
1165 self,
1166 name: &'static str,
1167 variants: &'static [&'static str],
1168 visitor: V,
1169 ) -> Result<V::Value, Self::Error>
1170 where
1171 V: Visitor<'de>;
1172
1173 /// Hint that the `Deserialize` type is expecting the name of a struct
1174 /// field or the discriminant of an enum variant.
1175 fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1176 where
1177 V: Visitor<'de>;
1178
1179 /// Hint that the `Deserialize` type needs to deserialize a value whose type
1180 /// doesn't matter because it is ignored.
1181 ///
1182 /// Deserializers for non-self-describing formats may not support this mode.
1183 fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1184 where
1185 V: Visitor<'de>;
1186
1187 /// Determine whether `Deserialize` implementations should expect to
1188 /// deserialize their human-readable form.
1189 ///
1190 /// Some types have a human-readable form that may be somewhat expensive to
1191 /// construct, as well as a binary form that is compact and efficient.
1192 /// Generally text-based formats like JSON and YAML will prefer to use the
1193 /// human-readable one and binary formats like Postcard will prefer the
1194 /// compact one.
1195 ///
1196 /// ```edition2021
1197 /// # use std::ops::Add;
1198 /// # use std::str::FromStr;
1199 /// #
1200 /// # struct Timestamp;
1201 /// #
1202 /// # impl Timestamp {
1203 /// # const EPOCH: Timestamp = Timestamp;
1204 /// # }
1205 /// #
1206 /// # impl FromStr for Timestamp {
1207 /// # type Err = String;
1208 /// # fn from_str(_: &str) -> Result<Self, Self::Err> {
1209 /// # unimplemented!()
1210 /// # }
1211 /// # }
1212 /// #
1213 /// # struct Duration;
1214 /// #
1215 /// # impl Duration {
1216 /// # fn seconds(_: u64) -> Self { unimplemented!() }
1217 /// # }
1218 /// #
1219 /// # impl Add<Duration> for Timestamp {
1220 /// # type Output = Timestamp;
1221 /// # fn add(self, _: Duration) -> Self::Output {
1222 /// # unimplemented!()
1223 /// # }
1224 /// # }
1225 /// #
1226 /// use serde::de::{self, Deserialize, Deserializer};
1227 ///
1228 /// impl<'de> Deserialize<'de> for Timestamp {
1229 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1230 /// where
1231 /// D: Deserializer<'de>,
1232 /// {
1233 /// if deserializer.is_human_readable() {
1234 /// // Deserialize from a human-readable string like "2015-05-15T17:01:00Z".
1235 /// let s = String::deserialize(deserializer)?;
1236 /// Timestamp::from_str(&s).map_err(de::Error::custom)
1237 /// } else {
1238 /// // Deserialize from a compact binary representation, seconds since
1239 /// // the Unix epoch.
1240 /// let n = u64::deserialize(deserializer)?;
1241 /// Ok(Timestamp::EPOCH + Duration::seconds(n))
1242 /// }
1243 /// }
1244 /// }
1245 /// ```
1246 ///
1247 /// The default implementation of this method returns `true`. Data formats
1248 /// may override this to `false` to request a compact form for types that
1249 /// support one. Note that modifying this method to change a format from
1250 /// human-readable to compact or vice versa should be regarded as a breaking
1251 /// change, as a value serialized in human-readable mode is not required to
1252 /// deserialize from the same data in compact mode.
1253 #[inline]
1254 fn is_human_readable(&self) -> bool {
1255 true
1256 }
1257
1258 // Not public API.
1259 #[cfg(all(not(no_serde_derive), any(feature = "std", feature = "alloc")))]
1260 #[doc(hidden)]
1261 fn __deserialize_content_v1<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1262 where
1263 V: Visitor<'de, Value = crate::private::Content<'de>>,
1264 {
1265 self.deserialize_any(visitor)
1266 }
1267}
1268
1269////////////////////////////////////////////////////////////////////////////////
1270
1271/// This trait represents a visitor that walks through a deserializer.
1272///
1273/// # Lifetime
1274///
1275/// The `'de` lifetime of this trait is the requirement for lifetime of data
1276/// that may be borrowed by `Self::Value`. See the page [Understanding
1277/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1278///
1279/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1280///
1281/// # Example
1282///
1283/// ```edition2021
1284/// # use serde::de::{self, Unexpected, Visitor};
1285/// # use std::fmt;
1286/// #
1287/// /// A visitor that deserializes a long string - a string containing at least
1288/// /// some minimum number of bytes.
1289/// struct LongString {
1290/// min: usize,
1291/// }
1292///
1293/// impl<'de> Visitor<'de> for LongString {
1294/// type Value = String;
1295///
1296/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1297/// write!(formatter, "a string containing at least {} bytes", self.min)
1298/// }
1299///
1300/// fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
1301/// where
1302/// E: de::Error,
1303/// {
1304/// if s.len() >= self.min {
1305/// Ok(s.to_owned())
1306/// } else {
1307/// Err(de::Error::invalid_value(Unexpected::Str(s), &self))
1308/// }
1309/// }
1310/// }
1311/// ```
1312#[cfg_attr(
1313 not(no_diagnostic_namespace),
1314 diagnostic::on_unimplemented(
1315 message = "the trait bound `{Self}: serde::de::Visitor<'de>` is not satisfied",
1316 )
1317)]
1318pub trait Visitor<'de>: Sized {
1319 /// The value produced by this visitor.
1320 type Value;
1321
1322 /// Format a message stating what data this Visitor expects to receive.
1323 ///
1324 /// This is used in error messages. The message should complete the sentence
1325 /// "This Visitor expects to receive ...", for example the message could be
1326 /// "an integer between 0 and 64". The message should not be capitalized and
1327 /// should not end with a period.
1328 ///
1329 /// ```edition2021
1330 /// # use std::fmt;
1331 /// #
1332 /// # struct S {
1333 /// # max: usize,
1334 /// # }
1335 /// #
1336 /// # impl<'de> serde::de::Visitor<'de> for S {
1337 /// # type Value = ();
1338 /// #
1339 /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1340 /// write!(formatter, "an integer between 0 and {}", self.max)
1341 /// }
1342 /// # }
1343 /// ```
1344 fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
1345
1346 /// The input contains a boolean.
1347 ///
1348 /// The default implementation fails with a type error.
1349 fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
1350 where
1351 E: Error,
1352 {
1353 Err(Error::invalid_type(Unexpected::Bool(v), &self))
1354 }
1355
1356 /// The input contains an `i8`.
1357 ///
1358 /// The default implementation forwards to [`visit_i64`].
1359 ///
1360 /// [`visit_i64`]: #method.visit_i64
1361 fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
1362 where
1363 E: Error,
1364 {
1365 self.visit_i64(v as i64)
1366 }
1367
1368 /// The input contains an `i16`.
1369 ///
1370 /// The default implementation forwards to [`visit_i64`].
1371 ///
1372 /// [`visit_i64`]: #method.visit_i64
1373 fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
1374 where
1375 E: Error,
1376 {
1377 self.visit_i64(v as i64)
1378 }
1379
1380 /// The input contains an `i32`.
1381 ///
1382 /// The default implementation forwards to [`visit_i64`].
1383 ///
1384 /// [`visit_i64`]: #method.visit_i64
1385 fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
1386 where
1387 E: Error,
1388 {
1389 self.visit_i64(v as i64)
1390 }
1391
1392 /// The input contains an `i64`.
1393 ///
1394 /// The default implementation fails with a type error.
1395 fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
1396 where
1397 E: Error,
1398 {
1399 Err(Error::invalid_type(Unexpected::Signed(v), &self))
1400 }
1401
1402 /// The input contains a `i128`.
1403 ///
1404 /// The default implementation fails with a type error.
1405 fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>
1406 where
1407 E: Error,
1408 {
1409 let mut buf = [0u8; 58];
1410 let mut writer = crate::format::Buf::new(&mut buf);
1411 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as i128", v)).unwrap();
1412 Err(Error::invalid_type(
1413 Unexpected::Other(writer.as_str()),
1414 &self,
1415 ))
1416 }
1417
1418 /// The input contains a `u8`.
1419 ///
1420 /// The default implementation forwards to [`visit_u64`].
1421 ///
1422 /// [`visit_u64`]: #method.visit_u64
1423 fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
1424 where
1425 E: Error,
1426 {
1427 self.visit_u64(v as u64)
1428 }
1429
1430 /// The input contains a `u16`.
1431 ///
1432 /// The default implementation forwards to [`visit_u64`].
1433 ///
1434 /// [`visit_u64`]: #method.visit_u64
1435 fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
1436 where
1437 E: Error,
1438 {
1439 self.visit_u64(v as u64)
1440 }
1441
1442 /// The input contains a `u32`.
1443 ///
1444 /// The default implementation forwards to [`visit_u64`].
1445 ///
1446 /// [`visit_u64`]: #method.visit_u64
1447 fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
1448 where
1449 E: Error,
1450 {
1451 self.visit_u64(v as u64)
1452 }
1453
1454 /// The input contains a `u64`.
1455 ///
1456 /// The default implementation fails with a type error.
1457 fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
1458 where
1459 E: Error,
1460 {
1461 Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
1462 }
1463
1464 /// The input contains a `u128`.
1465 ///
1466 /// The default implementation fails with a type error.
1467 fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>
1468 where
1469 E: Error,
1470 {
1471 let mut buf = [0u8; 57];
1472 let mut writer = crate::format::Buf::new(&mut buf);
1473 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as u128", v)).unwrap();
1474 Err(Error::invalid_type(
1475 Unexpected::Other(writer.as_str()),
1476 &self,
1477 ))
1478 }
1479
1480 /// The input contains an `f32`.
1481 ///
1482 /// The default implementation forwards to [`visit_f64`].
1483 ///
1484 /// [`visit_f64`]: #method.visit_f64
1485 fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1486 where
1487 E: Error,
1488 {
1489 self.visit_f64(v as f64)
1490 }
1491
1492 /// The input contains an `f64`.
1493 ///
1494 /// The default implementation fails with a type error.
1495 fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1496 where
1497 E: Error,
1498 {
1499 Err(Error::invalid_type(Unexpected::Float(v), &self))
1500 }
1501
1502 /// The input contains a `char`.
1503 ///
1504 /// The default implementation forwards to [`visit_str`] as a one-character
1505 /// string.
1506 ///
1507 /// [`visit_str`]: #method.visit_str
1508 #[inline]
1509 fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
1510 where
1511 E: Error,
1512 {
1513 self.visit_str(v.encode_utf8(&mut [0u8; 4]))
1514 }
1515
1516 /// The input contains a string. The lifetime of the string is ephemeral and
1517 /// it may be destroyed after this method returns.
1518 ///
1519 /// This method allows the `Deserializer` to avoid a copy by retaining
1520 /// ownership of any buffered data. `Deserialize` implementations that do
1521 /// not benefit from taking ownership of `String` data should indicate that
1522 /// to the deserializer by using `Deserializer::deserialize_str` rather than
1523 /// `Deserializer::deserialize_string`.
1524 ///
1525 /// It is never correct to implement `visit_string` without implementing
1526 /// `visit_str`. Implement neither, both, or just `visit_str`.
1527 fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1528 where
1529 E: Error,
1530 {
1531 Err(Error::invalid_type(Unexpected::Str(v), &self))
1532 }
1533
1534 /// The input contains a string that lives at least as long as the
1535 /// `Deserializer`.
1536 ///
1537 /// This enables zero-copy deserialization of strings in some formats. For
1538 /// example JSON input containing the JSON string `"borrowed"` can be
1539 /// deserialized with zero copying into a `&'a str` as long as the input
1540 /// data outlives `'a`.
1541 ///
1542 /// The default implementation forwards to `visit_str`.
1543 #[inline]
1544 fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
1545 where
1546 E: Error,
1547 {
1548 self.visit_str(v)
1549 }
1550
1551 /// The input contains a string and ownership of the string is being given
1552 /// to the `Visitor`.
1553 ///
1554 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1555 /// a string created by the `Deserializer`. `Deserialize` implementations
1556 /// that benefit from taking ownership of `String` data should indicate that
1557 /// to the deserializer by using `Deserializer::deserialize_string` rather
1558 /// than `Deserializer::deserialize_str`, although not every deserializer
1559 /// will honor such a request.
1560 ///
1561 /// It is never correct to implement `visit_string` without implementing
1562 /// `visit_str`. Implement neither, both, or just `visit_str`.
1563 ///
1564 /// The default implementation forwards to `visit_str` and then drops the
1565 /// `String`.
1566 #[inline]
1567 #[cfg(any(feature = "std", feature = "alloc"))]
1568 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1569 fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
1570 where
1571 E: Error,
1572 {
1573 self.visit_str(&v)
1574 }
1575
1576 /// The input contains a byte array. The lifetime of the byte array is
1577 /// ephemeral and it may be destroyed after this method returns.
1578 ///
1579 /// This method allows the `Deserializer` to avoid a copy by retaining
1580 /// ownership of any buffered data. `Deserialize` implementations that do
1581 /// not benefit from taking ownership of `Vec<u8>` data should indicate that
1582 /// to the deserializer by using `Deserializer::deserialize_bytes` rather
1583 /// than `Deserializer::deserialize_byte_buf`.
1584 ///
1585 /// It is never correct to implement `visit_byte_buf` without implementing
1586 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1587 fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
1588 where
1589 E: Error,
1590 {
1591 Err(Error::invalid_type(Unexpected::Bytes(v), &self))
1592 }
1593
1594 /// The input contains a byte array that lives at least as long as the
1595 /// `Deserializer`.
1596 ///
1597 /// This enables zero-copy deserialization of bytes in some formats. For
1598 /// example Postcard data containing bytes can be deserialized with zero
1599 /// copying into a `&'a [u8]` as long as the input data outlives `'a`.
1600 ///
1601 /// The default implementation forwards to `visit_bytes`.
1602 #[inline]
1603 fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
1604 where
1605 E: Error,
1606 {
1607 self.visit_bytes(v)
1608 }
1609
1610 /// The input contains a byte array and ownership of the byte array is being
1611 /// given to the `Visitor`.
1612 ///
1613 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1614 /// a byte buffer created by the `Deserializer`. `Deserialize`
1615 /// implementations that benefit from taking ownership of `Vec<u8>` data
1616 /// should indicate that to the deserializer by using
1617 /// `Deserializer::deserialize_byte_buf` rather than
1618 /// `Deserializer::deserialize_bytes`, although not every deserializer will
1619 /// honor such a request.
1620 ///
1621 /// It is never correct to implement `visit_byte_buf` without implementing
1622 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1623 ///
1624 /// The default implementation forwards to `visit_bytes` and then drops the
1625 /// `Vec<u8>`.
1626 #[cfg(any(feature = "std", feature = "alloc"))]
1627 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1628 fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
1629 where
1630 E: Error,
1631 {
1632 self.visit_bytes(&v)
1633 }
1634
1635 /// The input contains an optional that is absent.
1636 ///
1637 /// The default implementation fails with a type error.
1638 fn visit_none<E>(self) -> Result<Self::Value, E>
1639 where
1640 E: Error,
1641 {
1642 Err(Error::invalid_type(Unexpected::Option, &self))
1643 }
1644
1645 /// The input contains an optional that is present.
1646 ///
1647 /// The default implementation fails with a type error.
1648 fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1649 where
1650 D: Deserializer<'de>,
1651 {
1652 let _ = deserializer;
1653 Err(Error::invalid_type(Unexpected::Option, &self))
1654 }
1655
1656 /// The input contains a unit `()`.
1657 ///
1658 /// The default implementation fails with a type error.
1659 fn visit_unit<E>(self) -> Result<Self::Value, E>
1660 where
1661 E: Error,
1662 {
1663 Err(Error::invalid_type(Unexpected::Unit, &self))
1664 }
1665
1666 /// The input contains a newtype struct.
1667 ///
1668 /// The content of the newtype struct may be read from the given
1669 /// `Deserializer`.
1670 ///
1671 /// The default implementation fails with a type error.
1672 fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1673 where
1674 D: Deserializer<'de>,
1675 {
1676 let _ = deserializer;
1677 Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
1678 }
1679
1680 /// The input contains a sequence of elements.
1681 ///
1682 /// The default implementation fails with a type error.
1683 fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
1684 where
1685 A: SeqAccess<'de>,
1686 {
1687 let _ = seq;
1688 Err(Error::invalid_type(Unexpected::Seq, &self))
1689 }
1690
1691 /// The input contains a key-value map.
1692 ///
1693 /// The default implementation fails with a type error.
1694 fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
1695 where
1696 A: MapAccess<'de>,
1697 {
1698 let _ = map;
1699 Err(Error::invalid_type(Unexpected::Map, &self))
1700 }
1701
1702 /// The input contains an enum.
1703 ///
1704 /// The default implementation fails with a type error.
1705 fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error>
1706 where
1707 A: EnumAccess<'de>,
1708 {
1709 let _ = data;
1710 Err(Error::invalid_type(Unexpected::Enum, &self))
1711 }
1712
1713 // Used when deserializing a flattened Option field. Not public API.
1714 #[doc(hidden)]
1715 fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()>
1716 where
1717 D: Deserializer<'de>,
1718 {
1719 Err(())
1720 }
1721}
1722
1723////////////////////////////////////////////////////////////////////////////////
1724
1725/// Provides a `Visitor` access to each element of a sequence in the input.
1726///
1727/// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
1728/// which deserializes each item in a sequence.
1729///
1730/// # Lifetime
1731///
1732/// The `'de` lifetime of this trait is the lifetime of data that may be
1733/// borrowed by deserialized sequence elements. See the page [Understanding
1734/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1735///
1736/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1737///
1738/// # Example implementation
1739///
1740/// The [example data format] presented on the website demonstrates an
1741/// implementation of `SeqAccess` for a basic JSON data format.
1742///
1743/// [example data format]: https://serde.rs/data-format.html
1744#[cfg_attr(
1745 not(no_diagnostic_namespace),
1746 diagnostic::on_unimplemented(
1747 message = "the trait bound `{Self}: serde::de::SeqAccess<'de>` is not satisfied",
1748 )
1749)]
1750pub trait SeqAccess<'de> {
1751 /// The error type that can be returned if some error occurs during
1752 /// deserialization.
1753 type Error: Error;
1754
1755 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1756 /// `Ok(None)` if there are no more remaining items.
1757 ///
1758 /// `Deserialize` implementations should typically use
1759 /// `SeqAccess::next_element` instead.
1760 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1761 where
1762 T: DeserializeSeed<'de>;
1763
1764 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1765 /// `Ok(None)` if there are no more remaining items.
1766 ///
1767 /// This method exists as a convenience for `Deserialize` implementations.
1768 /// `SeqAccess` implementations should not override the default behavior.
1769 #[inline]
1770 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1771 where
1772 T: Deserialize<'de>,
1773 {
1774 self.next_element_seed(PhantomData)
1775 }
1776
1777 /// Returns the number of elements remaining in the sequence, if known.
1778 #[inline]
1779 fn size_hint(&self) -> Option<usize> {
1780 None
1781 }
1782}
1783
1784impl<'de, A> SeqAccess<'de> for &mut A
1785where
1786 A: ?Sized + SeqAccess<'de>,
1787{
1788 type Error = A::Error;
1789
1790 #[inline]
1791 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1792 where
1793 T: DeserializeSeed<'de>,
1794 {
1795 (**self).next_element_seed(seed)
1796 }
1797
1798 #[inline]
1799 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1800 where
1801 T: Deserialize<'de>,
1802 {
1803 (**self).next_element()
1804 }
1805
1806 #[inline]
1807 fn size_hint(&self) -> Option<usize> {
1808 (**self).size_hint()
1809 }
1810}
1811
1812////////////////////////////////////////////////////////////////////////////////
1813
1814/// Provides a `Visitor` access to each entry of a map in the input.
1815///
1816/// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
1817///
1818/// # Lifetime
1819///
1820/// The `'de` lifetime of this trait is the lifetime of data that may be
1821/// borrowed by deserialized map entries. See the page [Understanding
1822/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1823///
1824/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1825///
1826/// # Example implementation
1827///
1828/// The [example data format] presented on the website demonstrates an
1829/// implementation of `MapAccess` for a basic JSON data format.
1830///
1831/// [example data format]: https://serde.rs/data-format.html
1832#[cfg_attr(
1833 not(no_diagnostic_namespace),
1834 diagnostic::on_unimplemented(
1835 message = "the trait bound `{Self}: serde::de::MapAccess<'de>` is not satisfied",
1836 )
1837)]
1838pub trait MapAccess<'de> {
1839 /// The error type that can be returned if some error occurs during
1840 /// deserialization.
1841 type Error: Error;
1842
1843 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1844 /// if there are no more remaining entries.
1845 ///
1846 /// `Deserialize` implementations should typically use
1847 /// `MapAccess::next_key` or `MapAccess::next_entry` instead.
1848 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1849 where
1850 K: DeserializeSeed<'de>;
1851
1852 /// This returns a `Ok(value)` for the next value in the map.
1853 ///
1854 /// `Deserialize` implementations should typically use
1855 /// `MapAccess::next_value` instead.
1856 ///
1857 /// # Panics
1858 ///
1859 /// Calling `next_value_seed` before `next_key_seed` is incorrect and is
1860 /// allowed to panic or return bogus results.
1861 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1862 where
1863 V: DeserializeSeed<'de>;
1864
1865 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1866 /// the map, or `Ok(None)` if there are no more remaining items.
1867 ///
1868 /// `MapAccess` implementations should override the default behavior if a
1869 /// more efficient implementation is possible.
1870 ///
1871 /// `Deserialize` implementations should typically use
1872 /// `MapAccess::next_entry` instead.
1873 #[inline]
1874 fn next_entry_seed<K, V>(
1875 &mut self,
1876 kseed: K,
1877 vseed: V,
1878 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1879 where
1880 K: DeserializeSeed<'de>,
1881 V: DeserializeSeed<'de>,
1882 {
1883 match tri!(self.next_key_seed(kseed)) {
1884 Some(key) => {
1885 let value = tri!(self.next_value_seed(vseed));
1886 Ok(Some((key, value)))
1887 }
1888 None => Ok(None),
1889 }
1890 }
1891
1892 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1893 /// if there are no more remaining entries.
1894 ///
1895 /// This method exists as a convenience for `Deserialize` implementations.
1896 /// `MapAccess` implementations should not override the default behavior.
1897 #[inline]
1898 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1899 where
1900 K: Deserialize<'de>,
1901 {
1902 self.next_key_seed(PhantomData)
1903 }
1904
1905 /// This returns a `Ok(value)` for the next value in the map.
1906 ///
1907 /// This method exists as a convenience for `Deserialize` implementations.
1908 /// `MapAccess` implementations should not override the default behavior.
1909 ///
1910 /// # Panics
1911 ///
1912 /// Calling `next_value` before `next_key` is incorrect and is allowed to
1913 /// panic or return bogus results.
1914 #[inline]
1915 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1916 where
1917 V: Deserialize<'de>,
1918 {
1919 self.next_value_seed(PhantomData)
1920 }
1921
1922 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1923 /// the map, or `Ok(None)` if there are no more remaining items.
1924 ///
1925 /// This method exists as a convenience for `Deserialize` implementations.
1926 /// `MapAccess` implementations should not override the default behavior.
1927 #[inline]
1928 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1929 where
1930 K: Deserialize<'de>,
1931 V: Deserialize<'de>,
1932 {
1933 self.next_entry_seed(PhantomData, PhantomData)
1934 }
1935
1936 /// Returns the number of entries remaining in the map, if known.
1937 #[inline]
1938 fn size_hint(&self) -> Option<usize> {
1939 None
1940 }
1941}
1942
1943impl<'de, A> MapAccess<'de> for &mut A
1944where
1945 A: ?Sized + MapAccess<'de>,
1946{
1947 type Error = A::Error;
1948
1949 #[inline]
1950 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1951 where
1952 K: DeserializeSeed<'de>,
1953 {
1954 (**self).next_key_seed(seed)
1955 }
1956
1957 #[inline]
1958 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1959 where
1960 V: DeserializeSeed<'de>,
1961 {
1962 (**self).next_value_seed(seed)
1963 }
1964
1965 #[inline]
1966 fn next_entry_seed<K, V>(
1967 &mut self,
1968 kseed: K,
1969 vseed: V,
1970 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1971 where
1972 K: DeserializeSeed<'de>,
1973 V: DeserializeSeed<'de>,
1974 {
1975 (**self).next_entry_seed(kseed, vseed)
1976 }
1977
1978 #[inline]
1979 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1980 where
1981 K: Deserialize<'de>,
1982 V: Deserialize<'de>,
1983 {
1984 (**self).next_entry()
1985 }
1986
1987 #[inline]
1988 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1989 where
1990 K: Deserialize<'de>,
1991 {
1992 (**self).next_key()
1993 }
1994
1995 #[inline]
1996 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1997 where
1998 V: Deserialize<'de>,
1999 {
2000 (**self).next_value()
2001 }
2002
2003 #[inline]
2004 fn size_hint(&self) -> Option<usize> {
2005 (**self).size_hint()
2006 }
2007}
2008
2009////////////////////////////////////////////////////////////////////////////////
2010
2011/// Provides a `Visitor` access to the data of an enum in the input.
2012///
2013/// `EnumAccess` is created by the `Deserializer` and passed to the
2014/// `Visitor` in order to identify which variant of an enum to deserialize.
2015///
2016/// # Lifetime
2017///
2018/// The `'de` lifetime of this trait is the lifetime of data that may be
2019/// borrowed by the deserialized enum variant. See the page [Understanding
2020/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2021///
2022/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2023///
2024/// # Example implementation
2025///
2026/// The [example data format] presented on the website demonstrates an
2027/// implementation of `EnumAccess` for a basic JSON data format.
2028///
2029/// [example data format]: https://serde.rs/data-format.html
2030#[cfg_attr(
2031 not(no_diagnostic_namespace),
2032 diagnostic::on_unimplemented(
2033 message = "the trait bound `{Self}: serde::de::EnumAccess<'de>` is not satisfied",
2034 )
2035)]
2036pub trait EnumAccess<'de>: Sized {
2037 /// The error type that can be returned if some error occurs during
2038 /// deserialization.
2039 type Error: Error;
2040 /// The `Visitor` that will be used to deserialize the content of the enum
2041 /// variant.
2042 type Variant: VariantAccess<'de, Error = Self::Error>;
2043
2044 /// `variant` is called to identify which variant to deserialize.
2045 ///
2046 /// `Deserialize` implementations should typically use `EnumAccess::variant`
2047 /// instead.
2048 fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
2049 where
2050 V: DeserializeSeed<'de>;
2051
2052 /// `variant` is called to identify which variant to deserialize.
2053 ///
2054 /// This method exists as a convenience for `Deserialize` implementations.
2055 /// `EnumAccess` implementations should not override the default behavior.
2056 #[inline]
2057 fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
2058 where
2059 V: Deserialize<'de>,
2060 {
2061 self.variant_seed(PhantomData)
2062 }
2063}
2064
2065/// `VariantAccess` is a visitor that is created by the `Deserializer` and
2066/// passed to the `Deserialize` to deserialize the content of a particular enum
2067/// variant.
2068///
2069/// # Lifetime
2070///
2071/// The `'de` lifetime of this trait is the lifetime of data that may be
2072/// borrowed by the deserialized enum variant. See the page [Understanding
2073/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2074///
2075/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2076///
2077/// # Example implementation
2078///
2079/// The [example data format] presented on the website demonstrates an
2080/// implementation of `VariantAccess` for a basic JSON data format.
2081///
2082/// [example data format]: https://serde.rs/data-format.html
2083#[cfg_attr(
2084 not(no_diagnostic_namespace),
2085 diagnostic::on_unimplemented(
2086 message = "the trait bound `{Self}: serde::de::VariantAccess<'de>` is not satisfied",
2087 )
2088)]
2089pub trait VariantAccess<'de>: Sized {
2090 /// The error type that can be returned if some error occurs during
2091 /// deserialization. Must match the error type of our `EnumAccess`.
2092 type Error: Error;
2093
2094 /// Called when deserializing a variant with no values.
2095 ///
2096 /// If the data contains a different type of variant, the following
2097 /// `invalid_type` error should be constructed:
2098 ///
2099 /// ```edition2021
2100 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2101 /// #
2102 /// # struct X;
2103 /// #
2104 /// # impl<'de> VariantAccess<'de> for X {
2105 /// # type Error = value::Error;
2106 /// #
2107 /// fn unit_variant(self) -> Result<(), Self::Error> {
2108 /// // What the data actually contained; suppose it is a tuple variant.
2109 /// let unexp = Unexpected::TupleVariant;
2110 /// Err(de::Error::invalid_type(unexp, &"unit variant"))
2111 /// }
2112 /// #
2113 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2114 /// # where
2115 /// # T: DeserializeSeed<'de>,
2116 /// # { unimplemented!() }
2117 /// #
2118 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2119 /// # where
2120 /// # V: Visitor<'de>,
2121 /// # { unimplemented!() }
2122 /// #
2123 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2124 /// # where
2125 /// # V: Visitor<'de>,
2126 /// # { unimplemented!() }
2127 /// # }
2128 /// ```
2129 fn unit_variant(self) -> Result<(), Self::Error>;
2130
2131 /// Called when deserializing a variant with a single value.
2132 ///
2133 /// `Deserialize` implementations should typically use
2134 /// `VariantAccess::newtype_variant` instead.
2135 ///
2136 /// If the data contains a different type of variant, the following
2137 /// `invalid_type` error should be constructed:
2138 ///
2139 /// ```edition2021
2140 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2141 /// #
2142 /// # struct X;
2143 /// #
2144 /// # impl<'de> VariantAccess<'de> for X {
2145 /// # type Error = value::Error;
2146 /// #
2147 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2148 /// # unimplemented!()
2149 /// # }
2150 /// #
2151 /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
2152 /// where
2153 /// T: DeserializeSeed<'de>,
2154 /// {
2155 /// // What the data actually contained; suppose it is a unit variant.
2156 /// let unexp = Unexpected::UnitVariant;
2157 /// Err(de::Error::invalid_type(unexp, &"newtype variant"))
2158 /// }
2159 /// #
2160 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2161 /// # where
2162 /// # V: Visitor<'de>,
2163 /// # { unimplemented!() }
2164 /// #
2165 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2166 /// # where
2167 /// # V: Visitor<'de>,
2168 /// # { unimplemented!() }
2169 /// # }
2170 /// ```
2171 fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
2172 where
2173 T: DeserializeSeed<'de>;
2174
2175 /// Called when deserializing a variant with a single value.
2176 ///
2177 /// This method exists as a convenience for `Deserialize` implementations.
2178 /// `VariantAccess` implementations should not override the default
2179 /// behavior.
2180 #[inline]
2181 fn newtype_variant<T>(self) -> Result<T, Self::Error>
2182 where
2183 T: Deserialize<'de>,
2184 {
2185 self.newtype_variant_seed(PhantomData)
2186 }
2187
2188 /// Called when deserializing a tuple-like variant.
2189 ///
2190 /// The `len` is the number of fields expected in the tuple variant.
2191 ///
2192 /// If the data contains a different type of variant, the following
2193 /// `invalid_type` error should be constructed:
2194 ///
2195 /// ```edition2021
2196 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2197 /// #
2198 /// # struct X;
2199 /// #
2200 /// # impl<'de> VariantAccess<'de> for X {
2201 /// # type Error = value::Error;
2202 /// #
2203 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2204 /// # unimplemented!()
2205 /// # }
2206 /// #
2207 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2208 /// # where
2209 /// # T: DeserializeSeed<'de>,
2210 /// # { unimplemented!() }
2211 /// #
2212 /// fn tuple_variant<V>(self, _len: usize, _visitor: V) -> Result<V::Value, Self::Error>
2213 /// where
2214 /// V: Visitor<'de>,
2215 /// {
2216 /// // What the data actually contained; suppose it is a unit variant.
2217 /// let unexp = Unexpected::UnitVariant;
2218 /// Err(de::Error::invalid_type(unexp, &"tuple variant"))
2219 /// }
2220 /// #
2221 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2222 /// # where
2223 /// # V: Visitor<'de>,
2224 /// # { unimplemented!() }
2225 /// # }
2226 /// ```
2227 fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2228 where
2229 V: Visitor<'de>;
2230
2231 /// Called when deserializing a struct-like variant.
2232 ///
2233 /// The `fields` are the names of the fields of the struct variant.
2234 ///
2235 /// If the data contains a different type of variant, the following
2236 /// `invalid_type` error should be constructed:
2237 ///
2238 /// ```edition2021
2239 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2240 /// #
2241 /// # struct X;
2242 /// #
2243 /// # impl<'de> VariantAccess<'de> for X {
2244 /// # type Error = value::Error;
2245 /// #
2246 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2247 /// # unimplemented!()
2248 /// # }
2249 /// #
2250 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2251 /// # where
2252 /// # T: DeserializeSeed<'de>,
2253 /// # { unimplemented!() }
2254 /// #
2255 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2256 /// # where
2257 /// # V: Visitor<'de>,
2258 /// # { unimplemented!() }
2259 /// #
2260 /// fn struct_variant<V>(
2261 /// self,
2262 /// _fields: &'static [&'static str],
2263 /// _visitor: V,
2264 /// ) -> Result<V::Value, Self::Error>
2265 /// where
2266 /// V: Visitor<'de>,
2267 /// {
2268 /// // What the data actually contained; suppose it is a unit variant.
2269 /// let unexp = Unexpected::UnitVariant;
2270 /// Err(de::Error::invalid_type(unexp, &"struct variant"))
2271 /// }
2272 /// # }
2273 /// ```
2274 fn struct_variant<V>(
2275 self,
2276 fields: &'static [&'static str],
2277 visitor: V,
2278 ) -> Result<V::Value, Self::Error>
2279 where
2280 V: Visitor<'de>;
2281}
2282
2283////////////////////////////////////////////////////////////////////////////////
2284
2285/// Converts an existing value into a `Deserializer` from which other values can
2286/// be deserialized.
2287///
2288/// # Lifetime
2289///
2290/// The `'de` lifetime of this trait is the lifetime of data that may be
2291/// borrowed from the resulting `Deserializer`. See the page [Understanding
2292/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2293///
2294/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2295///
2296/// # Example
2297///
2298/// ```edition2021
2299/// use serde::de::{value, Deserialize, IntoDeserializer};
2300/// use serde_derive::Deserialize;
2301/// use std::str::FromStr;
2302///
2303/// #[derive(Deserialize)]
2304/// enum Setting {
2305/// On,
2306/// Off,
2307/// }
2308///
2309/// impl FromStr for Setting {
2310/// type Err = value::Error;
2311///
2312/// fn from_str(s: &str) -> Result<Self, Self::Err> {
2313/// Self::deserialize(s.into_deserializer())
2314/// }
2315/// }
2316/// ```
2317pub trait IntoDeserializer<'de, E: Error = value::Error> {
2318 /// The type of the deserializer being converted into.
2319 type Deserializer: Deserializer<'de, Error = E>;
2320
2321 /// Convert this value into a deserializer.
2322 fn into_deserializer(self) -> Self::Deserializer;
2323}
2324
2325////////////////////////////////////////////////////////////////////////////////
2326
2327/// Used in error messages.
2328///
2329/// - expected `a`
2330/// - expected `a` or `b`
2331/// - expected one of `a`, `b`, `c`
2332///
2333/// The slice of names must not be empty.
2334struct OneOf {
2335 names: &'static [&'static str],
2336}
2337
2338impl Display for OneOf {
2339 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2340 match self.names.len() {
2341 0 => panic!(), // special case elsewhere
2342 1 => write!(formatter, "`{}`", self.names[0]),
2343 2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
2344 _ => {
2345 tri!(formatter.write_str("one of "));
2346 for (i, alt) in self.names.iter().enumerate() {
2347 if i > 0 {
2348 tri!(formatter.write_str(", "));
2349 }
2350 tri!(write!(formatter, "`{}`", alt));
2351 }
2352 Ok(())
2353 }
2354 }
2355 }
2356}
2357
2358struct WithDecimalPoint(f64);
2359
2360impl Display for WithDecimalPoint {
2361 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2362 struct LookForDecimalPoint<'f, 'a> {
2363 formatter: &'f mut fmt::Formatter<'a>,
2364 has_decimal_point: bool,
2365 }
2366
2367 impl<'f, 'a> fmt::Write for LookForDecimalPoint<'f, 'a> {
2368 fn write_str(&mut self, fragment: &str) -> fmt::Result {
2369 self.has_decimal_point |= fragment.contains('.');
2370 self.formatter.write_str(fragment)
2371 }
2372
2373 fn write_char(&mut self, ch: char) -> fmt::Result {
2374 self.has_decimal_point |= ch == '.';
2375 self.formatter.write_char(ch)
2376 }
2377 }
2378
2379 if self.0.is_finite() {
2380 let mut writer = LookForDecimalPoint {
2381 formatter,
2382 has_decimal_point: false,
2383 };
2384 tri!(write!(writer, "{}", self.0));
2385 if !writer.has_decimal_point {
2386 tri!(formatter.write_str(".0"));
2387 }
2388 } else {
2389 tri!(write!(formatter, "{}", self.0));
2390 }
2391 Ok(())
2392 }
2393}